152 research outputs found

    Design of master and slave modules on battery management system for electric vehicles

    Get PDF
    Nowadays, electric vehicle usage and the use of LiFePO4 batteries in electric vehicles gradually increase. However, there are important features to be considered to use these batteries safely and efficiently. Incorrect use of these batteries can lead to burning, explosion or shortening of the life of batteries. In this paper, a Battery Management System (BMS) for lithium based batteries is designed that operates more efficiently and communicates with UART between master and slave modules and can communicate via CAN protocol with external devices. Micro controller based control and protection equipment is designed that help to measure and monitor the voltage, temperature and current values of the batteries. They protect the battery cells from the conditions such as over charge, over discharge, high current, high temperature. BMS balances battery cell voltages during charging process with passive cell voltage balancing. In addition to the main controller module in the BMS, slave controller modules have been added to provide high resolution voltage and temperature tracking. A modular BMS has been devised which can be used in groups of batteries of different voltage values thanks to electrically isolated slave control modules

    Multipath Separation-Direction of Arrival (MS-DOA) with Genetic Search Algorithm for HF channels

    Get PDF
    Cataloged from PDF version of article.Direction-of-Arrival (DOA) defines the estimation of arrival angles of an electromagnetic wave impinging on a set of sensors. For dispersive and time-varying HF channels, where the propagating wave also suffers from the multipath phenomena, estimation of DOA is a very challenging problem. Multipath Separation-Direction of Arrival (MS-DOA), that is developed to estimate both the arrival angles in elevation and azimuth and the incoming signals at the output of the reference antenna with very high accuracy, proves itself as a strong alternative in DOA estimation for HF channels. In MS-DOA, a linear system of equations is formed using the coefficients of the basis vector for the array output vector, the incoming signal vector and the array manifold. The angles of arrival in elevation and azimuth are obtained as the maximizers of the sum of the magnitude squares of the projection of the signal coefficients on the column space of the array manifold. In this study, alternative Genetic Search Algorithms (GA) for the maximizers of the projection sum are investigated using simulated and experimental ionospheric channel data. It is observed that GA combined with MS-DOA is a powerful alternative in online DOA estimation and can be further developed according to the channel characteristics of a specific HF link. (C) 2009 COSPAR. Published by Elsevier Ltd. All rights reserve

    Advanced exergoeconomic analysis of organic Rankine cycle waste heat recovery system of a marine power plant

    Get PDF
    In this paper, superheated and saturated vapor ORCs commonly utilized as waste heat recovery systems of a marine power plant are investigated. First, a parametric study with different organic fluids has been carried out by applying conventional exergy and exergoeconomic analyses to the system considered in order to identify the best possible operating conditions and also to evaluate the findings of conventional exergy-based analyses. Then, advanced exergy and exergoeconomic analyses have been performed on ORCs by splitting exergy destruction rates, exergy destruction costs and investment costs of components and overall system to identify avoidable parts of costs and exergy destructions. Finally, decision criteria were suggested on the selection of more appropriate system depending on the results of the analysis

    Microwave sintering of SiAlON ceramics with TiN addition

    Get PDF
    α-β SiAlON/TiN composites with nominal composition of α:= β25:75 were fabricated by microwave sintering. The effect of titanium nitride addition on the phases, microstructure, microwave absorption ability and mechanical properties (Vickers hardness and fracture toughness) of the SiAlON-based composites were studied. Finite Difference Time Domain (FDTD) software was used for the numerical simulation in order to assess the most suitable experimental setup. Sintering trials were performed in a single mode microwave furnace operating at 2.45 GHz and a power output of 660W, for a reaction time of 30 min. SiC blocks were used as a susceptor to accelerate the microwave processing by hybrid heating, with reduced heat losses from the surface of the material of the α- βSiAlON/TiN composites. The optimum comprehensive mechanical properties, corresponding to a relative density of 96%, Vickers hardness of 12.98 ± 1.81 GPa and Vickers indentation fracture toughness of 5.52 ± 0.71 MPa.m1/2 were obtained at 850°C when the content of TiN was 5 wt.%

    Discordant identification of pediatric severe sepsis by research and clinical definitions in the SPROUT international point prevalence study

    Get PDF
    Introduction: Consensus criteria for pediatric severe sepsis have standardized enrollment for research studies. However, the extent to which critically ill children identified by consensus criteria reflect physician diagnosis of severe sepsis, which underlies external validity for pediatric sepsis research, is not known. We sought to determine the agreement between physician diagnosis and consensus criteria to identify pediatric patients with severe sepsis across a network of international pediatric intensive care units (PICUs). Methods: We conducted a point prevalence study involving 128 PICUs in 26 countries across 6 continents. Over the course of 5 study days, 6925 PICU patients <18 years of age were screened, and 706 with severe sepsis defined either by physician diagnosis or on the basis of 2005 International Pediatric Sepsis Consensus Conference consensus criteria were enrolled. The primary endpoint was agreement of pediatric severe sepsis between physician diagnosis and consensus criteria as measured using Cohen's ?. Secondary endpoints included characteristics and clinical outcomes for patients identified using physician diagnosis versus consensus criteria. Results: Of the 706 patients, 301 (42.6 %) met both definitions. The inter-rater agreement (? ± SE) between physician diagnosis and consensus criteria was 0.57 ± 0.02. Of the 438 patients with a physician's diagnosis of severe sepsis, only 69 % (301 of 438) would have been eligible to participate in a clinical trial of pediatric severe sepsis that enrolled patients based on consensus criteria. Patients with physician-diagnosed severe sepsis who did not meet consensus criteria were younger and had lower severity of illness and lower PICU mortality than those meeting consensus criteria or both definitions. After controlling for age, severity of illness, number of comorbid conditions, and treatment in developed versus resource-limited regions, patients identified with severe sepsis by physician diagnosis alone or by consensus criteria alone did not have PICU mortality significantly different from that of patients identified by both physician diagnosis and consensus criteria. Conclusions: Physician diagnosis of pediatric severe sepsis achieved only moderate agreement with consensus criteria, with physicians diagnosing severe sepsis more broadly. Consequently, the results of a research study based on consensus criteria may have limited generalizability to nearly one-third of PICU patients diagnosed with severe sepsis

    Gas Analysis and Electrical Test Methods

    No full text
    This paper presents methodologies for power transformer fault diagnosis using dissolved gas analysis and electrical test methods. These methods are widely used in determination of inception faults of power transformers. Dissolved gas analysis test provides fault diagnosis of power transformers. On the other hand the electrical test methods are used for detection of root causes and fault locations and they provide more specific information about the faults. The aim of this work is to study the faults that are measured and recorded in Turkish Electricity Transmission Company (TEIAS) power systems. For this purpose, four specific cases are considered and analyzed with dissolved gas analysis and electrical testing methods. Three of these cases are defective situations and one case is a non-defective situation. These real cases of measurements have been analyzed with both methods in detail. Assessment results showed that a single method cannot yield accurate enough results in some specific fault conditions. Therefore it was concluded that cooperation of both methods in the assessment of fault condition gives more trustworthy results

    ultracapacitor-powered ultralight electric vehicle

    No full text
    To improve the driving performance of the electric vehicles, batteries or ultracapacitors (UCs) are frequently preferred in the energizing systems. In hybrid structures with multiple supply sources, an energy management system (EMS) is needed to improve the system efficiency, and to provide the optimum power sharing between a battery and a UC. The purpose of this study is to investigate the effectiveness of the Jaya optimization method for the urban use of the EMS of an ultralight electric vehicle powered by battery/UC. The performance of the proposed method is compared with dynamic programming (DP) that is one of the global optimization methods and particle swarm optimization (PSO) that is one of the other heuristic methods for real-time applications. The simulation results show that Jaya-EMS approached 3.1% to the DP, which yields the optimum result with respect to the total energy loss. In addition, the proposed method yields a loss of less than 1.9% from the PSO-EMS. If all the above situations are considered, the proposed EMS method has less lossy alternative solution for the real-time applications.C1 [Demircali, Akif; Koroglu, Selim] Pamukkale Univ, Dept Elect Elect Engn, Denizli, Turkey

    PERFORMANCE ANALYSIS OF CYLINDRICAL SHIELDING IN UNDERGROUND CABLES

    Get PDF
    The shielding efficiency of cylindrical shields for three phase underground cable is investigated for several shields material using finite element method (FEM). This FEM model takes into account the nonlinear hysteretic behavior for ferromagnetic material in the shield. The shields are cylindrical shaped and the power cables are positioned in flat configuration. The shielding efficiency is compared for shields with the same geometry but several shielding materials with nonlinear hysteretic behavior (Magnetil and DX52, both from Arcelor-Mittal firm) and a non-ferromagnetic and electrically conducting shielding material (Aluminium). The paper investigates the influence of several parameters on shielding efficiency: the size of the shield radius, the current amplitude in the cable and the thickness of the shield. Magnetil shield material is the best in terms of shielding performance. The numerical models are validated with experimental results for without shield
    corecore